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ABSTRACT

We propose a novel Two-Stage framework for Structured Pruning (2SSP) for
pruning Large Language Models (LLMs), which combines two different strategies
of pruning, namely Width and Depth Pruning. The first stage (Width Pruning)
removes entire neurons, hence their corresponding rows and columns, aiming to
preserve the connectivity among the pruned structures in the intermediate state of
the Feed-Forward Networks in each Transformer block. The second stage (Depth
Pruning), instead, removes entire Attention submodules. We also propose a novel
mechanism to balance the sparsity rate of the two stages w.r.t. to the desired global
sparsity. We test 2SSP on four LLM families and three sparsity rates (25%, 37.5%,
and 50%), measuring the resulting perplexity over three language modeling datasets
as well as the performance over six downstream tasks. Our method consistently
outperforms five state-of-the-art competitors over three language modeling and
six downstream tasks, with an up to two-order-of-magnitude gain in terms of
pruning time. The code is available at available at https://github.com/
FabrizioSandri/2SSP.

1 INTRODUCTION

The sheer size of the recent, billion-scale Large Language Models (LLMs) is one of the main reasons
for their successful performance. However, it comes at the cost of computational budget in terms of
required GPUs as well as time for pre-training and inference, which in turn has serious economic and
environmental impacts. Therefore, studying approaches to reduce the computational burden of such
models while minimizing their performance degradation has become a pressing matter.

One of the main approaches to address this issue is through Network Pruning Frantar & Alistarh
(2023); Ma et al. (2023), which mainly focuses on reducing the size of pre-trained LLMs as well as
their inference time. Among the several pruning methods available in the literature, reliable inference
speed-ups Kurtic et al. (2023); Ashkboos et al. (2024) have been achieved mainly through structured
pruning, i.e., approaches that remove entire portions of the model. Different strategies to select
which portions of the network to remove have been proposed, see 1, identifying Width pruning,
which removes rows/columns and/or single layers, Depth Pruning (Blocks), which removes entire
Transformer Blocks, and Depth Pruning (Submodules), which removes entire submodules (i.e., the
Attention submodule–in the following, referred to as “Attention”, for brevity— and/or Feed-Forward
Network (FFN)) from the Transformer Blocks. width pruning has the main advantage of having a
lower granularity level in the removal search space, which leads to a more refined identification of
unimportant components of the model. On the other hand, the advantage of depth pruning lies in
the lower computation time required to obtain the sparse structure as well as the larger inference
speed-up that comes from the removal of entire blocks/submodules.

Contributions So far, the aforementioned categories of structured pruning have been investigated
independently of one another and their combination is currently a relatively unexplored research
direction. In this paper, we propose a Two-Stage Framework for Structured Pruning (2SSP), a new
structured pruning approach that, to our knowledge, is the first to combine width and depth pruning,
hence exploiting the advantages of both approaches. The proposed 2SSP works in two stages. The
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Figure 1: Conceptual scheme of 2SSP. The left part shows the original LLM; the central part indicates
stage s1 , which focuses on FFNs; the right part indicates stage s2 , which focuses on Attention.

first stage works at a lower granularity level, i.e. it uses width pruning to remove neurons from
the intermediate state of FFNs based on the output’s magnitude. This is done while preserving the
network connectivity, which is a critical measure for reducing performance degradation in sparse
structures Vysogorets & Kempe (2023); Cunegatti et al. (2024); Iurada et al. (2024). Moreover, the
first stage is applied only to the FFN parts of the model, for which pruning is known to be more
difficult than Attentions Siddiqui et al. (2024). The second stage complements the effect of the
first one by iteratively applying depth pruning on Attentions, based on the minimization of a given
performance metric (in our case, perplexity).

2 METHODS

We now introduce 2SSP, a novel pruning framework that combines two stages of structured pruning:
a first stage ( s1 ) which prunes at the level of entire neurons by removing rows and columns from
the FFN within the Transformer blocks; and a second stage ( s2 ), which performs submodule-based
depth pruning by removing entire Attentions.

Neuron Pruning ( s1 ) The method aims to prune the neurons of the intermediate representation
within the Linear layers of the FFN following the Attention in each Transformer block. The rationale
is that the FFN’s hidden state generates an intermediate representation that can be compressed by
removing entire neurons from its hidden state, obtaining a lower-dimensional representation that
preserves the most important features of the input sequence. The algorithm prunes an equal number
of neurons from each FFN, removing the neurons in the hidden state that have the lowest impact,
measured as the magnitude of their activated output. The magnitude is calculated as the average L2

norm across the tokens in a set of calibration samples from a given calibration dataset Dcal. The
top-K neurons are then retained in the FFN of each block.

Let the intermediate representation of the FFN in block b be denoted as Zb ∈ RT×dint , where T is the
sequence length and dint is the dimension of the intermediate representation of the FFN in block b.
For each neuron j, we compute an importance score sj across the calibration dataset Dcal:

sj =
1

|Dcal|

|Dcal|∑
c=1

∥z(j)c ∥2 (1)

where z
(j)
c is the activation of the j-th neuron for the c-th sequence in the calibration dataset, and

∥ · ∥2 denotes the L2 norm over the tokens in the calibration sequence.

Formally, let Win ∈ Rdint×dmodel and Wout ∈ Rdmodel×dint be the input and output projection matrices
of the FFN, respectively, where dmodel is the model’s hidden dimension. We define a binary mask
m ∈ {0, 1}dint that selects the top-K neurons to preserve based on their importance scores sj . The
pruned weight matrices are then computed as: Ŵin = Win[m = 1, :], and Ŵout = Wout[:,m = 1].

To illustrate the mechanism, let us consider a simple FFN with two Linear layers, denoted as lin
and lout. Removing a neuron from the hidden state of the FFN necessitates the removal of all the
associated weights in both lin and lout connected to that particular neuron. More precisely, given the
weight matrices Win ∈ Rdint×dmodel and Wout ∈ Rdmodel×dint , respectively of lin and lout, the pruning
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of a hidden state neuron involves eliminating (in this order, to preserve network connectivity) the
corresponding row in Win and the associated column in Wout.

Attention Pruning ( s2 ) Pruning only the FFN submodules limits the effectiveness of the algorithm,
as only a restricted fraction of the total number of parameters can be pruned leaving all the Attention
parameters intact. To address this limitation, inspired from the observation derived in Siddiqui et al.
(2024) where it has been shown how the Attentions can be removed to a certain degree (∼ 33%)
with almost no performance degradation, we propose a second pruning stage that, after removing a
certain fraction of FFN neurons, also prunes the remaining parameters from the Attentions. Unlike
FFNs, Attentions do not create a single hidden state due to the sequential application of multiple
mathematical operators, such as scaling, softmax, and matrix multiplication. This makes pruning
entire neurons impractical. We address this challenge by adopting the submodules pruning mechanism
proposed in Zhong et al. (2024), by removing only Attentions (and not also FFNs as in the original
mechanism) from the sparse network M1 obtained after the first stage. Specifically, we iteratively
remove the Attentions leading to the lowest perplexity on the calibration dataset until the target
sparsity is reached.

Formally, let A = {a1, . . . , aB} be the set of Attentions across all the B blocks of the Transformer.
At each step t, we select the Attention module a∗ whose removal minimizes the perplexity on the
calibration dataset: a∗ = argmin

a∈At

PPL(Mt \ a,Dcal), where At is the set of the remaining Attention

modules at step t, Mt \ a denotes the model at step t with the Attention module a removed, and PPL
represents the perplexity metric, calculated as the exponential of the negated average log-likelihood
over the calibration samples of Dcal.

Balancing the Sparsity Rate As explained above, the proposed 2SSP algorithm works in two stages.
Hence, given a target sparsity rate s, selecting the pruning rate allocated for each of the two stages
is also required. Through empirical analysis, we found out that the following equation provides
a reliable metric for determining the optimal number of Attention modules to prune at any given

sparsity rate: NAttn = round
(
B · s

|WFFN|
α|WAttn|

)
, where α = 1.5, |WFFN| represents the number of FFN

parameters per block, and |WAttn| represents the number of Attention parameters per block. This
equation captures two critical aspects of this pruning process. First, it ensures that the number of
pruned Attention parameters scales with increasing sparsity rates. Second, it adjusts the Attention
pruning rate based on the relative sizes of the FFN and Attention modules. Specifically, when |WFFN|

|WAttn|
is large, indicating that FFN parameters dominate the block structure, the equation reduces the
proportion of Attention parameters to be pruned. This adaptive behavior helps maintain the balance
between the number of Attentions and the number of FFN parameters pruned.

3 EXPERIMENTS
Table 1: Zero-shot performance for 2SSP vs. the
compared pruning models at 37.5% sparsity.

Model Algorithm M
M

L
U

W
Q

Pi
Q

A

H
S

A
R

C
-e

A
R

C
-c

Average

Mistral-v0.3 7B

Dense 59.08 73.72 80.30 60.91 79.67 48.81 67.08

ShortGPT 22.67 58.56 56.96 27.73 33.59 29.27 38.13
Sliding Window 25.54 57.22 59.19 29.41 34.51 26.88 38.79
BlockPruner 23.59 54.62 66.16 37.92 46.25 24.32 42.14
EvoPress 25.00 57.14 68.82 39.79 50.21 25.94 44.48
SliceGPT 23.15 61.88 65.34 36.95 42.68 21.42 41.90
2SSP 24.49 63.14 70.29 41.99 49.96 24.49 45.73

Llama-2 7B

Dense 40.67 68.90 78.07 57.09 76.22 43.34 60.72

ShortGPT 32.25 60.54 59.63 33.54 41.33 28.50 42.63
Sliding Window 33.38 58.64 60.07 33.47 36.15 28.41 41.69
BlockPruner 23.59 55.09 66.87 36.92 50.80 24.49 42.96
EvoPress 25.66 52.01 68.61 37.15 53.20 25.94 43.76
SliceGPT 23.07 63.85 67.90 40.40 47.56 26.19 44.83
2SSP 27.91 61.33 70.29 42.78 55.93 27.39 47.61

Qwen-2.5 7B

Dense 71.88 73.24 78.56 59.97 80.35 48.29 68.72

ShortGPT 23.02 51.46 63.98 33.90 50.55 24.74 41.27
Sliding Window 23.76 52.49 65.02 34.36 54.46 23.12 42.20
BlockPruner 25.15 53.35 67.41 36.97 58.59 27.22 44.78
EvoPress 24.21 55.17 67.30 36.95 59.76 27.13 45.09
SliceGPT 22.91 57.70 65.94 34.32 48.02 20.48 41.56
2SSP 23.34 61.40 70.29 43.75 52.65 26.79 46.37

Phi-3 14B

Dense 67.61 75.77 81.01 64.04 84.05 60.67 72.19

ShortGPT 27.03 52.09 56.04 27.15 34.34 28.50 37.53
Sliding Window 25.17 50.04 52.77 25.65 26.22 23.04 33.82
BlockPruner 27.90 61.40 68.12 42.00 62.75 37.37 49.93
EvoPress 34.63 60.14 67.85 41.46 61.74 35.58 50.23
SliceGPT 27.21 66.61 71.16 45.45 54.34 29.78 49.09
2SSP 51.85 68.82 74.97 51.60 67.26 38.99 58.92

In this section, we evaluate 2SSP in terms of
performance over both language modeling and
downstream tasks. w.r.t. the selected baselines:
namely ShortGPT Ma et al. (2023), and Slid-
ing Window Gromov et al. (2024) for the Depth
Block category, BlockPruner Zhong et al. (2024),
and EvoPress Sieberling et al. (2024) Depth Sub-
module category, and SliceGPT Ashkboos et al.
(2024) for the Depth Width. 2 reports all the nu-
merical results in terms of perplexity across the
tested dataset and sparsity rates. It is clear how
our proposed approach outperforms the base-
lines in all test cases. Even more interesting
is the robustness of our approach w.r.t. both
models and sparsity rates.

We also tested if our approach could still outper-
form all the baselines at sparsity rates different
from 25%, 37.5%, and 50%. For doing so, we
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Table 2: Perplexity for 2SSP vs. the compared pruning algorithms over three different sparsity rates
across four LLMs. The boldface and underline indicate, respectively, the best and second-best value
per dataset (excluding the dense baseline).

Sparsity Method
Mistral-v0.3 7B LLama-2 7B Qwen-2.5 7B Phi-3 14B

WikiText2 C4 Fineweb-Edu WikiText2 C4 Fineweb-Edu WikiText2 C4 Fineweb-Edu WikiText2 C4 Fineweb-Edu

0% Dense 5.36 8.13 6.49 5.47 7.13 6.44 6.85 11.68 7.7 2 4.31 8.54 6.41

25%

ShortGPT 44.65 38.62 32.81 25.43 31.04 22.8 13.09 19.38 14.24 129.79 124.02 139.66
Sliding Window 37.75 52.26 42.49 18.25 21.71 17.95 11.37 17.54 12.75 31.13 30.28 24.39
BlockPruner 10.33 13.43 10.95 12.09 12.98 11.04 11.57 17.43 12.33 9.76 13.16 9.83
EvoPress 9.35 12.86 10.39 10.37 11.92 10.23 11.74 17.29 12.41 8.71 12.34 9.53
SliceGPT 11.84 13.09 11.36 14.82 12.57 11.19 12.72 17.40 13.88 10.01 11.86 9.82
2SSP (Ours) 9.24 12.19 10.27 9.25 10.52 9.21 10.61 15.67 11.92 7.06 10.43 8.42

37.5%

ShortGPT 1.83e3 1.49e3 1.31e3 79.49 66.69 54.07 52.99 48.07 36.98 1.34e5 1.33e5 1.48e5

Sliding Window 984.31 1.40e3 1.36e3 207.04 225.83 172.21 21.73 30.88 23.07 1.20e6 5.71e5 5.03e5
BlockPruner 23.31 25.66 23.23 23.62 21.47 18.13 22.17 29.49 21.76 19.31 21.81 17.15
EvoPress 27.00 24.10 19.93 19.03 20.22 17.04 22.03 28.98 21.79 15.62 19.89 15.18
SliceGPT 23.24 21.41 19.98 30.28 19.58 18.71 25.08 28.07 25.31 17.06 15.81 14.52
2SSP (Ours) 14.92 17.15 15.03 14.64 14.93 13.36 15.26 20.95 16.89 9.79 12.88 10.91

50%

ShortGPT 1.01e3 963.5 889.31 233.18 187.46 160.98 9.30e4 1.27e8 3.63e8 4.40e5 2.79e5 3.67e5

Sliding Window 3.31e3 1.56e3 1.82e3 3.34e3 2.48e3 2.42e3 213.96 177.08 142.71 1.01e6 1.08e6 9.97e5
BlockPruner 81.90 64.85 54.64 71.36 55.46 48.10 54.97 63.00 47.94 56.6 57.36 46.40
EvoPress 91.83 73.71 60.55 70.97 44.39 38.58 49.91 57.95 43.45 54.46 50.22 39.95
SliceGPT 41.24 35.29 33.96 57.66 36.06 35.55 38.47 41.98 37.56 34.40 26.42 27.21
2SSP (Ours) 23.77 25.95 23.30 31.40 27.16 25.40 21.66 28.00 23.72 16.93 18.82 17.07

computed the perplexity over WikiText2 for dif-
ferent sparsity rates ranging from zero to 70%. The results for Mistral-v0.3 7B and LLama-2 7B are
shown in 2, where the performance trend of 2SSP w.r.t. the baselines indicated in 2 is confirmed
even across such a broader set of sparsity rates. In order to assess the performance of our approach
not only in terms of perplexity, we considered six different downstream tasks. In this case, we tested
2SSP, as well as the baselines, at 37.5% sparsity (the intermediate value among those considered)
considering the average zero-shot accuracy as the main metric. Table 1 shows the results of this
experimental setting, showing once again how 2SSP outperforms the tested baselines in most of the
cases (and always on average across all tasks).
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Figure 2: Perplexity for 2SSP vs. the compared
pruning algorithms for s ∈ [0, 0.7].

Pruning Runtime For any pruning algorithm to
be considered effective, along with the perfor-
mance obtained by the generated sparse model,
also the time required to obtain such sparse mod-
els is a critical metric. For this reason, we com-
pare the performance (in terms of perplexity
over WikiText2) vs. the pruning runtime of
2SSP and the baselines. 3 shows the trade-off
between these two metrics for the three sparsity
rates tested in 2, for the case LLama-2 7B. The
results clearly show how 2SSP is the best al-
gorithm in terms of performance vs. pruning
runtime trade-off. As expected, the fastest algorithms are the ones belonging to the Depth Pruning
(Blocks) category, since they apply pruning in one-shot, w.r.t. the similarity among blocks. On the
other hand, the algorithms from the Depth Pruning (Submodules) category are the slowest ones, since
they evaluate each possible submodule removal combination. To conclude, our approach, which
is a combination of one-shot removal ( s1 ) and submodule evaluation ( s2 ) can achieve the best
performance in terms of perplexity while requiring limited pruning runtime.
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Figure 3: Pruning runtime (red, left side of the x-axis, log scale) vs. perplexity (green, right side of
the x-axis, log scale) for 2SSP vs. the compared pruning algorithms over LLama-2 7B.

4 CONCLUSIONS

In this paper, we introduced 2SSP, a new structured pruning algorithm that aims to combine Width
Pruning for FFN submodules with Depth Pruning for Attentions. Our approach works in two stages
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by firstly pruning neurons in the intermediate state of FFN submodules, and then iteratively removing
Attentions based on the model performance computed as perplexity. The results demonstrate how our
proposed algorithm consistently outperforms the state-of-the-art baselines on both language modeling
and downstream tasks. 2SSP achieves these results while requiring limited pruning runtime, which
positions our method as state-of-the-art over the performance vs. pruning runtime trade-off.
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